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DO-254: Introduction

The use of increasingly complex electronic hardware for more of the
safety critical aircraft functions generates new safety and certification 
challenges. These challenges arise from a concern that said aircraft 
functions may be increasingly vulnerable to the adverse effects of 
hardware design errors that may be increasingly difficult to manage due 
to the increasing complexity of the hardware. 

To counteract this perceived escalation of risk it has become necessary to 
ensure that the potential for hardware design errors is addressed in a 
more consistent and verifiable manner during both the design and
certification processes.

DESIGN ASSURANCE GUIDANCE
FOR AIRBORNE ELECTRONIC HARDWARE
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An Example or Two to Get 
Things Started

CAE Tools and Logic Design:
Synchronization Circuits
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Intended Circuit
Synchronizer with Leading Edge Detect
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VHDL Code
entity EDGE_DETECT_SYNC is

generic (
RESET_LEVEL : STD_LOGIC := '1' );

port (
CLK        : in  STD_LOGIC;
RESET      : in  STD_LOGIC;
INPUT      : in  STD_LOGIC;
LED_OUT    : out STD_LOGIC;
TED_OUT    : out STD_LOGIC

);
end EDGE_DETECT_SYNC;

architecture BEHAVIORAL of EDGE_DETECT_SYNC
is

signal IN_BETWEEN : STD_LOGIC;
signal DATA_OUT   : STD_LOGIC;

begin

FF1 : process(RESET, CLK)
begin

if (RESET = RESET_LEVEL) then
IN_BETWEEN <= '0';

elsif rising_edge(CLK) then
IN_BETWEEN <= INPUT;

end if;
end process;

FF2 : process(RESET, CLK)
begin

if (RESET = RESET_LEVEL) then
DATA_OUT <= '0';

elsif rising_edge(CLK) then
DATA_OUT <= IN_BETWEEN;

end if;
end process;

LED_OUT <= (not DATA_OUT) and IN_BETWEEN;
TED_OUT <=  DATA_OUT and (not IN_BETWEEN);

end BEHAVIORAL;



6FY2005 S/W and CEH Standardization Conference rk

Synthesized Circuit
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Synthesized Circuit

Original

“Optimized”

The designer used this point to 
synchronize signals and drive a 
motor.  The short circuit was “bad.”

Back end tools also have been caught replicating 
flip-flops in synchronizer circuits.



James E. Webb, NASA Administrator
BA Education, Lawyer

Dr. Wernher von Braun
Director Marshall Space Flight Center

Ph.D. Aerospace Engineering
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Basic Digital Logic and 
Programmable Devices
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Basic Digital Operations
A     Y
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' · +
There are 24 = 16 functions of two binary variables.



11FY2005 S/W and CEH Standardization Conference rk

Logic Functions
• Any logic function can be implemented 

with AND, OR, and NOT.
• One standard form is the sum of products

• Example: Y = (A • B  +  C • D)′

Inputs         AND gates           OR gates          Inverters  Outputs
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Universal Logic Gate
NOR Function

• NOR ::= Negative OR
Y = ( A + B )´

NOT

OR

AND

Can perform similar operation with NAND gate.
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Universal Logic Gate

Multiplexor:  Y = A • S  +  B • S´

NOT OR AND
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Universal Logic Gate
Look up table (LUT)

• Look up table (LUT)
Small memory

NOT         OR          AND

A X  Y      A B  Y      A B  Y
0 0  1      0 0  0      0 0  0
0 1  1      0 1  1      0 1  0
1 0  0      1 0  1      1 0  0
1 1  0      1 1  1      1 1  1



A Practical Example of the Universal Logic Element
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What Is A Gate Array?
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What Is An Antifuse-Based FPGA?
Antifuse-FPGA Architecture

In some FPGAs, the routing 
resources and antifuses are 
above the logic modules in a 
sea-of-modules architecture.  
This is enabled by the metal-
to-metal antifuse.

Antifuse resistance ranges 
from 200 to 500 Ω for ONO 
technology and about 25 Ω
for metal-to-metal types.

FOX
N++

Polysilicon
ONO
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What Is An Antifuse-Based FPGA?
Antifuse-FPGA Architecture

Modules

Unprogrammed
Antifuse

Modules

Vertical Track
Horizontal

Track

Programmed
Antifuse



20FY2005 S/W and CEH Standardization Conference rk

SRAM Switch Technology

Read or Write
Data

Configuration Memory Cell

Routing Connections

> 107 configuration memory cells per device
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Virtex II XC2V1000 SEU Data
Configuration Bits
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Galactic Cosmic Rays:
Integral LET Spectra

CREME 96, Solar Minimum, 100 mils (2.54 mm) Al
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Virtex II 2V6000 SEU Data
Atmospheric Neutrons

San Jose 443 10632 6 1.06E+06 1.96E+09 14.40 153,101 2.00E-14
ABQ 564 13536 34 1.35E+06 1.96E+09 53.28 721,198 2.41E-14
WM 229 5496 66 5.50E+05 1.96E+09 338.40 1,859,846 1.81E-14
MK 90 2160 18 2.16E+05 1.96E+09 229.57 495,880 1.85E-14

Average Cross-Section 2.02E-14
LANSCE 2V6000 3.05E-14

Rosetta Factor 1.51

Location Days Hours Upsets
>10MeV Cross-

SectionDevice Hours Bits
>10MeV Flux 

(n/cm2-hr) >10MeV Fluence

Test operating at 4 altitudes
• Sea Level   – San Jose
• 5,200 feet – Albuquerque
• 12,000 feet – White Mountain Research 
Center
• 13,500 feet – Mauna Kea Observatory



24FY2005 S/W and CEH Standardization Conference rk

Module Design of 

PALs and FPGAs
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Programmable Logic Components
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PROMs, PALs, and PLAs all have a similar architecture
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PAL Architecture

Programmable 
AND plane and 
fixed OR plane.

PALs have a built-in 
POR circuit to 
initialize all registers 
to zero.
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Act 2 Logic Modules

8-Input Combinational function

766 possible combinational
macros1

1”Antifuse Field Programmable Gate Arrays,” J. Greene, E. Hamdy, and S. Beal,
Proceedings of the IEEE, Vol. 91, No. 7, July 1993, pp. 1042-1056

Hard-wired Flip-flop
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XC4000 Series CLB
Simplified CLB - Carry Logic Not Shown

RAM LUTs
for Logic or
small SRAM Two Flip-flops



29FY2005 S/W and CEH Standardization Conference rk

Five Generations of Actel Space Flight FPGAs

Model A1020 A1280A A14100A RTSX32 RTSX72S

Foundry

Feature Size

Supply 
Voltages

Gate Density

Antifuse Type

Die Size .363” x .387” .416” x .433” .533” x .437” .428” x .412” .430” x .675”

MEC MEC MEC MEC MEC

2.0 µm 1.0 µm 0.8 µm 0.6 µm 0.25 µm

5.0V 5.0V 5.0V 5.0V/3.3V 5.0V/2.5V

1x 2x 5x 8x 18x

ONO ONO ONO M2M M2M

SEU-Hardened

Notes:
• Largest device in each family shown
• RH parts available: RH1020, RH1280; TID hardened only
• Gate counts approximate
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Some Definitions

DESIGN ASSURANCE GUIDANCE
FOR AIRBORNE ELECTRONIC HARDWARE

RTCA/DO-254
April 19, 2000
SC-180
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Definitions
Programmable Logic Device (PLD) - A component that is purchased as 
an electronic component and altered to perform an application specific 
function. PLDs include, but are not limited to, Programmable Array 
Logic components, Programmable Logic Array components, General 
Array Logic components, Field Programmable Gate Array components
and Erasable Programmable Logic Devices.

Design Tools - Tools whose output is part of hardware design and thus 
can introduce errors. For example, an ASIC router or a tool that
creates a board or chip layout based on a schematic or other detailed 
requirement.

Design Assurance – All of those planned and systematic actions used to 
substantiate, at an adequate level of confidence, that design errors have 
been identified and corrected such that the hardware satisfies the 
application certification basis.

DESIGN ASSURANCE GUIDANCE FOR AIRBORNE ELECTRONIC HARDWARE, RTCA/DO-254
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Definitions

Complex Hardware Item - All items that are not simple are considered to 
be ‘complex’. See definition of Simple Hardware Item.

Simple Hardware Item - A hardware item is considered simple if a 
comprehensive combination of deterministic tests and analyses can ensure 
correct functional performance under all foreseeable operating conditions 
with no anomalous behavior.

DESIGN ASSURANCE GUIDANCE FOR AIRBORNE ELECTRONIC HARDWARE, RTCA/DO-254
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Is Hardware Software?

HDL design representations use coded text based techniques that are 
similar in appearance to those used for software representations. This 
similarity in appearance can mislead one to attempt to use software 
verification methods directly on the design representation of HDL or other 
equivalent hardware specification languages. The guidance of this 
document is applicable for design assurance for designs using an HDL 
representation.

DESIGN ASSURANCE GUIDANCE FOR AIRBORNE ELECTRONIC HARDWARE, RTCA/DO-254

⇒ This document covers HDL-based designs
for safety critical aircraft functions 

From DO-254
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Finite State Machine: 
Introduction
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The Null Hypothesis:
Coding in HDLs can often lead to 
unreviewable designs, failures, and be 
slower, worse, and more expensive 
than schematics.

HDL = {VHDL. Verilog. C variant, Other HDL}

The Alternate Hypothesis
You guys are old and obsolete.
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HDL Rationale

• Can design larger circuits
• Work at a higher level of abstraction
• The synthesizer does all the hard work
• The manufacturers will stop supporting 

schematic entry
• It’s the “wave of the future”



41FY2005 S/W and CEH Standardization Conference rk

A Flight VHDL Example (1)
-- signal declarations

--internal
signal  rst, cs, ale_n, pulse1_n, pulse2_n, gate, gate_del, int_tx_gate  : std_logic;
signal  ck8hz, det_start_count, det_stop_count : std_logic;

signal  datout  : std_logic_vector(7 downto 0);
signal  address  : std_logic_vector(7 downto 0);
signal  dec_addr  : std_logic_vector(5 downto 0);
signal  p1neg0, p1pos0, p2neg0, p2pos0  : std_logic_vector(19 downto 0);
signal  p1neg1, p1pos1, p2neg1, p2pos1  : std_logic_vector(19 downto 0);
signal  p1neg2, p1pos2, p2neg2, p2pos2  : std_logic_vector(19 downto 0);
signal  p1neg3, p1pos3, p2neg3, p2pos3  : std_logic_vector(19 downto 0);
signal  p1neg4, p1pos4, p2neg4, p2pos4  : std_logic_vector(19 downto 0);
signal  p1neg5, p1pos5, p2neg5, p2pos5  : std_logic_vector(19 downto 0);
signal  p1neg6, p1pos6, p2neg6, p2pos6  : std_logic_vector(19 downto 0);
signal  p1neg7, p1pos7, p2neg7, p2pos7  : std_logic_vector(19 downto 0);
signal  p1neg8, p1pos8, p2neg8, p2pos8  : std_logic_vector(19 downto 0);
signal  p1neg9, p1pos9, p2neg9, p2pos9  : std_logic_vector(19 downto 0);
signal  p1neg_tx, p1pos_tx  : std_logic_vector(19 downto 0);
signal  count : std_logic_vector(22 downto 0);
signal  latch_count : std_logic_vector(15 downto 0);
signal  start_count, stop_count : std_logic_vector(21 downto 0);
signal  count_pulses  : std_logic_vector(3 downto 0);
signal  reset_pulse_counter  : std_logic;
signal  stop_gate, reset_gate_pulse  : std_logic;

constant count_to_8hz: integer := 7812499; 
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A Flight VHDL Example (2)
begin
-- Component instances

power_on_reset  : DEMETA
port map(ck => clk62_5mhz,

reset_in => pwronrst(0),
rstout => rst

);
counter_8hz : counter

generic map
(

num_bits => 23, 
last_count => count_to_8hz

) 
port map(reset => rst, 

ck  => clk62_5mhz,
enable => '1',
count  => count

);

counter_pulses : counter
generic map
(

num_bits => 4, 
last_count => 9

) 
port map(reset => reset_pulse_counter, 

ck  => pulse2_n,
enable => '1',
count  => count_pulses

);
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A Flight VHDL Example (3)
ADDRESS_DECODER: decoder

generic map
(

innum_bits => 3, 
outnum_bits => 6

) 

port map
( din => address(2 downto 0),

enable => cs,
dec_addr => dec_addr

);

ADDRESS_LATCH  : reg
generic map
(

num_bits    => 8, 
reset_value => 255

) 
port map(data => ad(7 downto 0),

ck => ale_n,
reset => pwronrst(0), 
ena => '1',
q => address

);
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A Flight VHDL Example (4)
START_GATE_7_0  : reg

generic map
(

num_bits => 8, 
reset_value => 255

) 
port map(data => ad,

ck => wr_n,
reset => pwronrst(0), 
ena => dec_addr(0),
q => start_count(7 downto 0) 

);

START_GATE_15_8  : reg
generic map
(

num_bits => 8, 
reset_value => 255

) 
port map(data => ad,

ck => wr_n,
reset => pwronrst(0), 
ena => dec_addr(1),
q => start_count(15 downto 8) 

);

START_GATE_21_16  : reg
generic map
(

num_bits => 6, 
reset_value => 63

) 
port map(data => ad(5 downto 0),

ck => wr_n,
reset => pwronrst(0), 
ena => dec_addr(2),
q => start_count(21 downto 16) 

);

STOP_GATE_7_0  : reg
generic map
(

num_bits => 8, 
reset_value => 250

) 
port map(data => ad,

ck => wr_n,
reset => pwronrst(0), 
ena => dec_addr(3),
q => stop_count(7 downto 0) 

);

Yes, there are 16 pages of structural VHDL -- they were 

deleted for this presentat on.  This design was rejected 

and not flown.

 
i
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“Computer Science World 
Mourning the Loss of Two of Its 

Trailblazers”

Dijkstra opposed the GOTO statement and worked to 
abolish it from programming.  In a March 1968 letter to 
the editor of Communications of the ACM, he 
contended that the more GOTO statements there 
are in a program, the harder it is to follow the 
source code. The letter is acknowledged to have 
initiated the movement to produce reliable software by 
developing structured programs.

EE Times, August 26, 2002, p. 20
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Think …

• What is the difference between a GOTO 
statement and structural VHDL?

• Why has the GOTO statement been 
considered EVIL by Computer Scientists 
for 40 years but is now present and prevalent 
in HDL-based hardware designs?
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Finite State Machine Analysis
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Ex: Master Sequencer, Schematic
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Master Sequencer Example
VHDL Implementation1

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
--
--
--
entity SEQUENCER is 

port( RST_N, C5MHZ, SIM_CLR_N  : in std_logic; 
THZ                      : in std_logic_vector(22 downto 0);
TEST_SEQ                 : in std_logic;
RATE_SEL                 : in std_logic_vector(1 downto 0);
OPEN_VALUE,CLOSE_VALUE   : in std_logic_vector(22 downto 0);
GATE                     : out std_logic;
EQUALS                   : out std_logic;
TIME_NOW, GRAYTIME       : out std_logic_vector(22 downto 0)

);
end SEQUENCER;

architecture RTL_ARCH of SEQUENCER is
constant R1HZ  : std_logic_vector (22 downto 0) := std_logic_vector(to_unsigned(5000000,23));
constant R6HZ  : std_logic_vector (22 downto 0) := std_logic_vector(to_unsigned(833333,23));
constant R8HZ  : std_logic_vector (22 downto 0) := std_logic_vector(to_unsigned(625000,23));
constant R10HZ : std_logic_vector (22 downto 0) := std_logic_vector(to_unsigned(500000,23));
component COUNT23 

port( RST_N,SYNC_CLR, CLOCK : in std_logic; 
Q                     : out std_logic_vector(22 downto 0)) ;

end component;
component MUX_23_4 

port( A, B, C, D, T : in std_logic_vector(22 downto 0); 
T_SEL, S1, S0 : in std_logic;
Y             : out std_logic_vector(22 downto 0)

);
end component;
component COMP23 

port( DATAA, DATAB : in std_logic_vector(22 downto 0); 
AEB          : out std_logic

);
end component;
component GATE_RANGE 

port( RST_N, CLOCK                     : in std_logic; 
OPEN_VALUE,CLOSE_VALUE, TIME_NOW : in std_logic_vector(22 downto 0);
GATE                             : out std_logic

);
end component;
component BIN2GRAY23 

port( A : in  std_logic_vector (22 downto 0);
Y : out std_logic_vector (22 downto 0)
);

end component;

signal Y : std_logic_vector (22 downto 0);
signal EQUALS_internal : std_logic;
signal TIME_NOW_internal : std_logic_vector(22 downto 0);

begin
MA1: COUNT23  port map 

(RST_N => SIM_CLR_N, SYNC_CLR => EQUALS_internal, CLOCK => C5MHZ, 
Q => TIME_NOW_internal
);

MA3: MUX_23_4 port map 
(A => R1HZ, B => R6HZ, C => R8HZ, D => R10HZ, T => THZ, 
T_SEL => TEST_SEQ, S1 => RATE_SEL(1), S0 => RATE_SEL(0),
Y => Y
);

MA2: COMP23   port map 
(DATAA => TIME_NOW_internal, DATAB=> Y, 
AEB => EQUALS_internal
);

MA7: GATE_RANGE port map 
(RST_N => RST_N, 
CLOCK => C5MHZ,  
OPEN_VALUE => OPEN_VALUE,CLOSE_VALUE => CLOSE_VALUE, TIME_NOW        => TIME_NOW_internal,
GATE => GATE
);

MA8: BIN2GRAY23 port map 
(A => TIME_NOW_internal,
Y => GRAYTIME
);

EQUALS <= EQUALS_internal;
TIME_NOW <= TIME_NOW_internal;
end RTL_ARCH;

Broken down into sections and 
enlarged on the following 
pages.

1 Design courtesy of an HDL 
design proponent.

Header (e.g., symbol), constants, 
and various definitions deleted 
from this abridged version for 
brevity.
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Master Sequencer Example
VHDL Implementation: Draw Nets

MA1: COUNT23    port map 
(RST_N => SIM_CLR_N, SYNC_CLR => EQUALS_internal, CLOCK => C5MHZ, 
Q => TIME_NOW_internal

);
MA3: MUX_23_4   port map 

(A => R1HZ, B => R6HZ, C => R8HZ, D => R10HZ, T => THZ, 
T_SEL => TEST_SEQ, S1 => RATE_SEL(1), S0 => RATE_SEL(0),
Y => Y

);
MA2: COMP23     port map 

(DATAA => TIME_NOW_internal, DATAB=> Y, 
AEB   => EQUALS_internal

);
MA7: GATE_RANGE port map 

(RST_N => RST_N, 
CLOCK => C5MHZ,  
OPEN_VALUE => OPEN_VALUE,CLOSE_VALUE => CLOSE_VALUE,
TIME_NOW   => TIME_NOW_internal,
GATE => GATE

);
MA8: BIN2GRAY23 port map 

(A => TIME_NOW_internal,
Y => GRAYTIME

);

EQUALS   <= EQUALS_internal;
TIME_NOW <= TIME_NOW_internal;

end RTL_ARCH;
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Master Sequencer Example
Schematic Analysis: Inputs and Outputs
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Master Sequencer Example
Schematic Analysis: Connectivity

This analysis is trivial; 
simply follow the lines on 
the schematic.
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Master Sequencer Example
Symbol Analysis: Inputs and Outputs

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
--
--
--
entity SEQUENCER is 

port( RST_N, C5MHZ, SIM_CLR_N  : in std_logic; 
THZ                      : in std_logic_vector(22 downto 0);
TEST_SEQ                 : in std_logic;
RATE_SEL                 : in std_logic_vector(1 downto 0);
OPEN_VALUE,CLOSE_VALUE   : in std_logic_vector(22 downto 0);
GATE                     : out std_logic;
EQUALS                   : out std_logic;
TIME_NOW, GRAYTIME       : out std_logic_vector(22 downto 0)

);
end SEQUENCER;

In designing this slide I put 
the colored boxes in the 
wrong spot.  An error-prone 
methodology!



54FY2005 S/W and CEH Standardization Conference rk

Master Sequencer Example
VHDL Analysis: Inputs and Outputs

MA1: COUNT23    port map 
(RST_N => SIM_CLR_N, SYNC_CLR => EQUALS_internal, CLOCK => C5MHZ, 
Q => TIME_NOW_internal

);
MA3: MUX_23_4   port map 

(A => R1HZ, B => R6HZ, C => R8HZ, D => R10HZ, T => THZ, 
T_SEL => TEST_SEQ, S1 => RATE_SEL(1), S0 => RATE_SEL(0),
Y => Y

);
MA2: COMP23     port map 

(DATAA => TIME_NOW_internal, DATAB=> Y, 
AEB   => EQUALS_internal

);
MA7: GATE_RANGE port map 

(RST_N => RST_N, 
CLOCK => C5MHZ,  
OPEN_VALUE => OPEN_VALUE,CLOSE_VALUE => CLOSE_VALUE,
TIME_NOW   => TIME_NOW_internal,
GATE => GATE

);
MA8: BIN2GRAY23 port map 

(A => TIME_NOW_internal,
Y => GRAYTIME

);

EQUALS   <= EQUALS_internal;
TIME_NOW <= TIME_NOW_internal;

end RTL_ARCH;

Note: Had to print out the 
entity just to make this 
slide.

Inputs
Outputs
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Master Sequencer Example
VHDL Analysis: Connectivity

MA1: COUNT23    port map 
(RST_N => SIM_CLR_N, SYNC_CLR => EQUALS_internal, CLOCK => C5MHZ, 
Q => TIME_NOW_internal

);
MA3: MUX_23_4   port map 

(A => R1HZ, B => R6HZ, C => R8HZ, D => R10HZ, T => THZ, 
T_SEL => TEST_SEQ, S1 => RATE_SEL(1), S0 => RATE_SEL(0),
Y => Y

);
MA2: COMP23     port map 

(DATAA => TIME_NOW_internal, DATAB=> Y, 
AEB   => EQUALS_internal

);
MA7: GATE_RANGE port map 

(RST_N => RST_N, 
CLOCK => C5MHZ,  
OPEN_VALUE => OPEN_VALUE,CLOSE_VALUE => CLOSE_VALUE,
TIME_NOW   => TIME_NOW_internal,
GATE => GATE

);
MA8: BIN2GRAY23 port map 

(A => TIME_NOW_internal,
Y => GRAYTIME

);

EQUALS   <= EQUALS_internal;
TIME_NOW <= TIME_NOW_internal;

end RTL_ARCH;

Making this chart was a lot 
of work and was error prone.
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Simpler Example: Synchronizer
Schematic Version
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Gray Codes

“This is rookie stuff, so I can duck 
out of this module, get some cookies, 

and come back later, right?”
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Reflected Gray and Binary Codes
Binary             Gray

0   0 0 0 0   0 0 0 0
1   0 0 0 1   0 0 0 1
2   0 0 1 0   0 0 1 1
3   0 0 1 1   0 0 1 0
4   0 1 0 0   0 1 1 0
5   0 1 0 1   0 1 1 1
6   0 1 1 0   0 1 0 1
7   0 1 1 1   0 1 0 0
8   1 0 0 0   1 1 0 0
9   1 0 0 1   1 1 0 1

10   1 0 1 0   1 1 1 1
11   1 0 1 1   1 1 1 0
12   1 1 0 0   1 0 1 0
13   1 1 0 1   1 0 1 1
14   1 1 1 0   1 0 0 1
15   1 1 1 1   1 0 0 0

• Single output changes at a time
– Asynchronous sampling
– Permits asynchronous 

combinational circuits to operate 
in fundamental mode

– Potential for power savings

• Multiphase, multifrequency
clock generator
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VHDL Code for a 4-Bit Gray 
Code Sequencer

Library IEEE;
Use IEEE.Std_Logic_1164.all;

Library Work;
Use Work.Gray_Types.All;

Library synplify;
Use synplify.attributes.all;

Entity Gray_Code Is

Port ( Clock      : In  Std_Logic;
Reset_N    : In  Std_Logic;
Q          : Out States );

End Entity Gray_Code;

Architecture RTL of Gray_Code Is
Attribute syn_netlist_hierarchy of RTL : architecture is false;

Signal IQ : States;
Attribute syn_encoding of IQ : signal is "gray"; 

Begin
GC: Process ( Clock, Reset_N )

Begin
If ( Reset_N = '0' )
Then IQ <= s0;
Else If Rising_Edge ( Clock )

Then Case IQ Is
When s0     => IQ <= s1;
When s1     => IQ <= s2;
When s2     => IQ <= s3;
When s3     => IQ <= s4;
When s4     => IQ <= s5;
When s5     => IQ <= s6;
When s6     => IQ <= s7;
When s7     => IQ <= s8;
When s8     => IQ <= s9;
When s9     => IQ <= s10;
When s10    => IQ <= s11;
When s11    => IQ <= s12;
When s12    => IQ <= s13;
When s13    => IQ <= s14;
When s14    => IQ <= s15;
When s15    => IQ <= s0;
When Others => IQ <= s0;
End Case;

End If;
End If;

End Process GC;

Q <= IQ;

End Architecture RTL;

Package Gray_Types Is

Type States Is ( s0,   s1,  s2,  s3, 
s4,   s5,  s6,  s7,
s8,   s9, s10, s11,
s12, s13, s14, s15  );

End Package Gray_Types;
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time =  9000.0ns  Q=0000
time = 10000.0ns  Q=1000
time = 11000.0ns  Q=1100
time = 12000.0ns  Q=0100
time = 13000.0ns  Q=0110
time = 14000.0ns  Q=1110
time = 15000.0ns  Q=1010
time = 16000.0ns  Q=0010
time = 17000.0ns  Q=0011
time = 18000.0ns  Q=1011
time = 19000.0ns  Q=1111
time = 20000.0ns  Q=0111
time = 21000.0ns  Q=0101
time = 22000.0ns  Q=1101
time = 23000.0ns  Q=1001
time = 24000.0ns  Q=0001
time = 25000.0ns  Q=0000

Logic Simulation (1)
net -vsm "D:\designs\
sequencers\gray_code4.vsm"

clock clock 1 0
stepsize 500ns

vector q q_3 q_2 q_1 q_0
radix bin q
watch q

l reset_n
cycle 8

h reset_n
cycle 32
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Logic Simulation (2)
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Synthesizer Output for a Gray Code Sequencer

Logic Equations:
A: ~D2 ~S10+D2 ~S00
B: D0 ~S00 ~S10+D1 S00 ~S10+D1 ~S00 S10+D0 S00 S10
C: D0 ~S00 ~S10+D1 S00 ~S10+~D0 ~S00 S10+D0 S00 S10
D: D0 ~S01+D1 ~S00 S01+D0 S00
E: ~D0 ~S00 ~S10+D0 S00 ~S10+D0 ~S00 S10+~D0 S00 S10
F: D0 ~S00 ~S10 +~D0 S00 ~S10+~D0 ~S00 S10+D0 S00 S10

A
B

C

D

E

F

Outputs are not always driven by a flip-flop
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Synthesis Issues

• Synthesizer ignored the command to make the state 
machine a Gray code and decided to make it a one-hot 
machine.  Had to “fiddle” with the VHDL compiler 
settings for default FSM.
– Signal IQ : States;
– Attribute syn_encoding of IQ : signal is "gray";

• Output glitches!!!!!!!!



64FY2005 S/W and CEH Standardization Conference rk

FSM Gray Codes and HDL
The Saga Continues ...

We had another engineer (HDL specialist) run the 
same Gray coded FSM through his version of 
Synplicity and what did he get …

… Yes, as the cynic would expect, a different 
answer!
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FSM Gray Codes and HDL
The Saga Continues ...

Replicating q_h.q[3], fanout 13 segments 2
Replicating q_h.q[2], fanout 13 segments 2
Replicating q_h.q[1], fanout 12 segments 2
Replicating q_h.q[0], fanout 12 segments 2

Added 0 Buffers
Added 4 Cells via replication

Resource Usage Report of Gray_Code 

Sequential Cells:    8 of 1080 (1%)
dfc1b:    8
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4-Bit Gray Code
No Enumerations or FSM Optimization

Flip-flop outputs routed directly to outputs.
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Finite State Machines:
Lockup States

Home
Ping

One

Two

Three

Reset

First Sample State Machine
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Finite State Machines

• Lockup State
– A state or sequence of states outside the normal flow of 

the FSM that do not lead back to a legal state.

• CAE Tools - Synthesizers
– Generates logic to implement a function, guided by the 

user.
– Typically does not generate logic for either fault 

detection or correction, important for military and 
aerospace applications.
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Library IEEE;  Use IEEE.Std_Logic_1164.All;
Entity Onehot_Simple_Act Is

Port ( Clk   : In  Std_Logic;
Reset : In  Std_Logic;
Ping  : Out Std_Logic   );

End Onehot_Simple_Act;

Library IEEE;  Use IEEE.Std_Logic_1164.All;
Architecture Onehot_Simple_Act of Onehot_Simple_Act Is
Type      StateType Is ( Home, One, Two, Three );
Signal    State     :  Statetype;

Begin
M: Process ( Clk, Reset )

Begin
If ( Reset = '1' )

Then State <= Home;
Else If Rising_Edge (Clk)

Then Case State Is
When Home  => State <= One;
When One   => State <= Two;
When Two   => State <= Three;
When Three => State <= Home;
End Case;

End If;
End If;

End Process M;
O: Process (State)

Begin
If (State = Home)

Then Ping <= '1';
Else Ping <= '0';
End If;

End Process O;
End Onehot_Simple_Act;

Enumeration

Next-state Logic
All states “covered”
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Lockup States
A Synthesized One-Hot Implementation

Typical ring counter with lockup states was synthesized.

Note: The same synthesizer with slightly different inputs, 
versions, or constraints, can produce circuits with 
significantly different topologies and properties.
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Lockup States
A “Safe” One-Hot Implementation

(Synthesized)

Reset flip-flops.  This implementation uses 6 flip-flops.
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Lockup States
A “Safe” One-Hot Implementation

(Synthesized)

Reset flip-flops.  Note second one is on falling edge 
of the clock.
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FSM Recommendations (Abridged)
• Schematics for the Top Level of the Hierarchy:

– Graphical representation shows parallelism and pipelining.
– Structural VHDL is similar (but worse!) then the GOTO in programming languages.  In a 

programming language, targets of GOTOs are often easy to see graphically.
• HDL for Components

– Components should normally be of the types that people can intuitively understand.  VHDL 
code works well for many of these types, allowing reuse, customization of size, etc.

• Complex State Machines
– VHDL also works well for expressing some complex state machines (CASE).
– Ironically, for some simple sequential circuits, VHDL is ill-suited for the task.

• Design for Reviews
– Designs that are too difficult to be reviewed will either not be reviewed well or at all.

• Control Your Design
• Monitor Your Design

– Listing show number of f-fs, types, replication, state assignments, elimination of TMR, etc..
• Verify your design thoroughly.

– Do not rely solely on simulation!!!!!
• Look and think.

– Do not rely on these tools to do your thinking for you.
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Complexity, System on a Chip, and 
Intellectual Property Issues

HDL allows designers to leave the confines of rigidly defined parts.

However, when constructing new components one shouldn't stray too far 
from the components that we all are familiar with from our board design 
days.  There's a reason why those parts are the ones the manufacturers 
provided for many decades.

In the same way that ANDs, ORs, and NOTs constitute a complete set 
for creating logic, higher level logic is made of things like muxes, 
counters, and decoders.  While we may no longer be limited to choosing 
between 4-1, 8-1, and 16-1 muxes, we're still using muxes, everyone 
understands how they work, and there's probably some cosmic reason 
why the common MSI structures are the ones that have endured.
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Bootloader (8KB)
FPGA LUT

HDLC Controller (4CH)
SSTL IP Core

386EX Processor 
ESA LEON IP Core

CAN Peripheral
ESA Hurricane IP Core

CAN TTC Node
ESA Hurricane IP Core

Program Memory (4MB)
3D+ Stackable SRAM

10BASE-2 Network
Bus LVDS

EDAC
SSTL IP Core

Bulk Data Storage (128MB)
IBM Microdrive

387SL CoProcessor 
SSTL Cordic IP Core

GLUE Logic
FPGA

SoC Translation
OBC386 SoC

Reference Model

A System-on-a-chip for Small Satellite Data Processing and Control
T. Vladimirova, H. Tiggeler, D. Zheng: Surrey Space Centre
2000 MAPLD International Conference



76FY2005 S/W and CEH Standardization Conference rk

A System-on-a-chip for Small Satellite Data Processing and Control
T. Vladimirova, H. Tiggeler, D. Zheng: Surrey Space Centre
2000 MAPLD International Conference

SSTL Core
ESA Core

Debug

CAN Network >100Mbps

170Mbyte
Microdrive

TX

TCSP1M*64
SRAM

CAN BUS LVDS

RX2RX1RX0

Linear 
Regulator

POR

SoC Architecture

+3.3V

EDAC
DECDED

ROM LUT
Bootstrap

AMBA AHB

CAN
Interface

AMBA AHB

LEON Sparc V8 CORDIC
Coprocessor

AMBA AHB

AMBA AHB

HDLC TX
Controller

AMBA AHB

HDLC RX
Controller

FIFO

AMBA AHB

HDLC RX
Controller

FIFO

AMBA AHB

HDLC RX
Controller

FIFO

System Bus

CF+ I/F
True IDE

FIFO

Parallel Port
Interface

UART

AMBA AHB

PIO

FIFO

AMBA AHB

+2.5V +3.3V

CLK CLK CLK CLK
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Am29CPL154 Features
• 512 x 36-bit Program ROM
• 8 test inputs, optionally registered
• 16 user outputs
• 28 instructions including conditional 

branching, looping, subroutine call, 
multiway branching

• 17-deep, 9-bit wide stack

“Reconfigurable, System-on-Chip, High-Speed Data Processing 
and Data Handling Electronics”
Igor Kleyner
1999 MAPLD International Conference
Laurel, Maryland 
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29KPL154 Capabilities
• Stack depth selectable from 0 to 17
• Program Memory internal, external or a 

combination
• Contents of Program optimized by 

Kompiler as ROM block
• Instruction Encoding Optimized by 

replacing unused fields with “don’t_cares”
• Program contents  analyzed by Kompiler, 

only used instructions and test conditions 
implemented

• 16 additional test inputs and 16 extra user 
outputs can be used

PC

Stack

Count Register

GOTO

Test In

Data Out

Optimization Effort Concentrated In
Darker Shaded Blocks

“Reconfigurable, System-on-Chip, High-Speed Data Processing 
and Data Handling Electronics”
Igor Kleyner
1999 MAPLD International Conference
Laurel, Maryland 
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“Off the Shelf” IP: Some Issues

• About the third party certification:
– Was not tested at the frequency being sold at.

• Code to support higher frequency was written after the certification.

– Unknown whether the Verilog of VHDL version was tested.

• “Difficult” to run tests omitted.
• “Holes” in test bench.
• Finite state machines not analyzed for lockup states
• Logic design not analyzed for flip-flop replication.

A recent look “under the hood” at some IP that is sold into 
the high-reliability space market showed:
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CAE Tools and Models
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CAE Tool Assessment and Qualification
(Mom and Apple Pie)

• Tools, both hardware and software, will normally be used during hardware 
design and verification.

– When design tools are used to generate the hardware item or the hardware 
design, an error in the tool could introduce an error in the hardware item. 

– When verification tools are used to verify the hardware item, an error in the 
tool may cause the tool to fail to detect an error in the hardware item or 
hardware design. 

• Prior to the use of a tool, a tool assessment should be performed. 
• The purpose of tool assessment and qualification is to ensure that the tool is 

capable of performing the particular design or verification activity to an 
acceptable level of confidence for which the tool will be used.

From DO-254
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CAE Tool Assessment and Qualification

• Does the Tool have Relevant History? When it is 
possible to show that the tool has been previously 
used and has been found to produce acceptable 
results, then no further assessment is necessary. 

From DO-254

How is an extrapolation of such a complex 
software product that is not open to inspection 
justified in a safety-critical application?

Isn’t this just the Russian Roulette Theory of 
Aircraft Design?
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CAE Tool Assessment and Qualification

• “Basic Tool Qualification. Establish and execute 
a plan to confirm that the tool produces correct 
outputs for its intended application using analysis 
or testing. The tool’s user guide or other 
description of the tool’s function and its use may 
be used to generate requirements.”

From DO-254

1. Does the user’s guide/tool description fully and accurately 
define the tool for all cases?

2. Do vendors guarantee their tool’s fidelity?
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A Logic Synthesizer: Manufacturer’s View

Xxxxxxxxxx warrants that the program portion of the SOFTWARE will 
perform substantially in accordance with the accompanying 
documentation for a period of 90 days from the date of receipt. 

IN NO EVENT SHALL XXXXXXXXXX OR ITS LICENSORS OR THEIR 
AGENTS BE LIABLE FOR ANY INDIRECT, SPECIAL, 
CONSEQUENTIAL OR INCIDENTAL DAMAGES WHATSOEVER 
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF 
BUSINESS PROFITS, BUSINESS INTERRUPTIONS, LOSS OF 
BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING 
OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE, EVEN 
IF XXXXXXXXXX AND/OR ITS LICENSORS HAVE BEEN ADVISED 
OF THE POSSIBILITY OF SUCH DAMAGES.
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A Simulator: Manufacturer’s View

5. LIMITED WARRANTY.

5.1. Xxxxxx Xxxxxxxx warrants that during the warranty period Software, 
when properly installed, will substantially conform to the functional 
specifications set forth in the applicable user manual. 

Xxxxxx Xxxxxxxx does not warrant that Software will meet your 
requirements or that operation of Software will be uninterrupted or 
error free.

XXXXXX XXXXXXXX AND ITS LICENSORS SPECIFICALLY 
DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY 
AND FITNESS FOR A PARTICULAR PURPOSE AND NON-
INFRINGEMENT OF INTELLECTUAL PROPERTY.
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Safety Critical Applications: Manufacturer’s View

7. LIFE ENDANGERING ACTIVITIES. NEITHER XXXXXX 
XXXXXXXX NOR ITS LICENSORS SHALL BE LIABLE FOR ANY 
DAMAGES RESULTING FROM OR IN CONNECTION WITH THE USE 
OF SOFTWARE IN ANY APPLICATION WHERE THE FAILURE OR 
INACCURACY OF THE SOFTWARE MIGHT RESULT IN DEATH 
OR PERSONAL INJURY. 

8. INDEMNIFICATION.  YOU AGREE TO INDEMNIFY AND HOLD 
HARMLESS XXXXXX XXXXXXXX AND ITS LICENSORS FROM 
ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, 
INCLUDING ATTORNEYS' FEES, ARISING OUT OF OR IN 
CONNECTION WITH YOUR USE OF SOFTWARE AS DESCRIBED IN 
SECTION 7.

Is proper qualification practical with complex CAE software?
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Xxxxxxxx makes no warranty of its IBIS Model Software, expressed, implied, or statutory, 
including but not limited to warranties of merchantability and fitness for a particular purpose.

Signal Integrity

[IBIS ver]       3.2
[File name]      XXXXX.ibs
[File Rev]       1.1
[Date]           March 1, 2004
[Disclaimer]     All V/I data was verified for accuracy against bench measurements. 
The measurements were done on typical production parts. 
3.3V PCI model has not been verified against silicon measurements. Please check 
Xxxxx IBIS page for updates at http://www.xxxxx.com/

[IBIS ver]     2.1
[File name]   XXXXXXX.ibs
[File Rev]     2.x
[Date]          April 9, 2003
[Source]       From Lab mesurement at Xxxxxxxx.
[Disclaimer]     This information is for modeling purposes only, and is not guaranteed.
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Timing Analysis

• Minimum delay numbers calculated by the 
timing analysis tools are not guaranteed.  They 
are not bound and actuals may be less then the 
reported values. 

• This is true for [static timing analyzer results] as 
well as files containing extracted delays such as .sdf
files. 

• …

The findings below are accurate at the time of this 
posting and is the manufacturer's current guidance.
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When Should You and When Should You Not 
Use A Hardware Description Language (HDL)?

• Critical Timing Circuit in a Scientific Instrument
– Timing unit with < 400 ps resolution

• Controller for a Crane in an Industrial Environment.
– Moving a Space Shuttle Orbiter

• Initiation Circuit for Explosives and Rockets
– Warhead Fuzes
– Self-Destruct Charges on a Solid Rocket Booster (manned)
– Rocket Motor On Fighter Aircraft Missile

Some Typical Applications

DO-254: “The guidance of this document is applicable for 
design assurance for designs using an HDL representation.”
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Critical Timing Circuit in a Scientific Instrument
Timing unit with < 400 ps resolution

• Don’t have to like it, you just have to do it.
• Requires hand placement of many critical modules

– Minimize Delays
– Match Delays

• Aid in calibration
• Try to cancel temperature coefficients for tPD

– Assume on order of 100 modules must be hand placed.

• Schematic:
– Straightforward to identify modules and place them.  Names in the 

design match the names in the back end tool.

• VHDL:
– Munges names, names constant from run to run?  Effects on timing 

constraint/analysis tools?



91FY2005 S/W and CEH Standardization Conference rk

A “Simple” Shift Register
Library IEEE;

Use IEEE.Std_Logic_1164.All;

Entity Skew Is
Port ( Clk   : In  Std_Logic;

D     : In  Std_Logic;
Q     : Out Std_Logic   );

End Skew;

Library IEEE;
Use IEEE.Std_Logic_1164.All;

Architecture Skew of Skew Is
Signal ShiftReg : Std_Logic_Vector (31 DownTo 0);
Begin

P: Process ( Clk )
Begin
If Rising_Edge (Clk)

Then Q                      <= ShiftReg(0);
ShiftReg (30 DownTo 0) <= ShiftReg (31 DownTo 1);
ShiftReg (31)          <= D;

End If;
End Process P;

End Skew;
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Clock Skew - From VHDL
Synthesized Results

Results will depend on coding, directives and attributes, synthesizer, and 
synthesizer revision.

Here we see that the logic synthesizer generated a poor circuit.
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A Schematic Approach to Skew-Tolerant Circuits

Opposite edge clocking technique
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A VHDL Approach to Skew Tolerant Circuits
(Simplified Excerpt)

DTCountIntNEProc:
Process ( Clock, Reset )
Begin
if Reset = ActiveReset then

DTCountIntNE <= "00000000";
elsif Falling_Edge ( Clock ) then

if ReadPulse = '1' then
DTCountIntNE <= DTCountInt + 1;
end if;

end if; 
End Process DTCountIntNEProc;

DTCountIntProc:
Process ( Clock )
Begin
if Rising_Edge ( Clock ) then

DTCountInt <= DTCountIntNE;
end if; 

End Process DTCountIntProc;

Opposite edge clocking technique
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VHDL Code and Synthesizer Analysis
Case Study - Hardened Clock Generator

-- Divide 25 MHz (40 ns) clock by 4
-- to produce 6.25 MHz clock (160 ns)
-- This clock should be placed on
-- an internal global buffer

clkint1: clkint
Port Map ( A => clk_div_cnt(1),

Y => clk_div4       );

clkdiv: Process (reset_n, clk)
Begin
If reset_n = '0' Then

clk_div_cnt <= "00";
Elsif clk = '1' And clk'EVENT Then

clk_div_cnt <= clk_div_cnt + 1;
End If;

End Process clkdiv;
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VHDL Code and Synthesizer Analysis
Case Study - Hardened Clock Generator

Most significant bit of the counter.  3 C-Cells are used for the voter.
This circuit contains a hazard.

25MHz

CLK_DIV4

Generated automatically 
from VHDL output.
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Language and Complexity
This is a simple example of language complexity

-- Age the debounced rxd signal to look for edges
...

process (reset, sys_clk)
begin

if reset = '1' then
debounced_rx_last   <= '0';
debounced_rx_change <= '0';

elsif rising_edge(sys_clk) then
debounced_rx_last <= debounced_rx;
if debounced_rx_last /= debounced_rx then

debounced_rx_change <= '1';
else

debounced_rx_change <= '0';
end if;

end if;
end process;
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WYSIWYG
Switching from a schematic based to a synthesis 
based design involves several methodology changes. 
Some old tools are no longer needed while other 
newer tools must be learned. A gate change is easier 
to do using a schematic. An equivalent change made 
by an HDL and then synthesized may produce other 
changes since the correspondence between the 
HDL and netlist produced as a result of synthesis 
can be obscure.  

“ Design, Test, and Certification Issues for Complex Integrated Circuits,” DOT/FAA/AR 95/31, L. 
Harrison and B. Landell, August 1996.
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How Do You Verify Circuit 
Correctness for Safety Critical 

Applications?
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Conclusions
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3.2 Logic Design Pitfalls

“ Design, Test, and Certification Issues for Complex Integrated Circuits,” DOT/FAA/AR 95/31, L. 
Harrison and B. Landell, August 1996.

The use of tools and higher levels of design abstraction, the pressures of 
rapid time to market (TTM), inexperienced designers, and other factors 
often contribute to designs of inferior quality.  With the availability of 
more powerful design tools, the actual logic implementations are 
further removed from the designer's critical inspection. Designs often 
use libraries of functions which are supplied or purchased along with the 
tools. Both the tools and design libraries may contain design flaws that can 
escape the notice of designers. Higher levels of abstraction mean that those 
who are not as familiar with digital design techniques and practices 
can now perform design functions. What can suffer is the ability of the 
designer to verify that the circuit implemented by the tool suite is correct.

Those tasked with design verification should ensure that design pitfalls are 
avoided and that good design techniques are applied consistently.  
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Conclusions: General
• Barto's Law: Every circuit is 

considered guilty until proven 
innocent.

• Simple → Complex: HDL’s can make 
certain circuit structures more complex 
to design and verify.
– Many vendors are now including 

schematic capability in their tool sets.
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Conclusions: Simple and Complex Hardware

• Based on DO-254 Definitions:
– “Simple Hardware” Is Not Easy
– “Complex Hardware” Does Not Belong In Any Safety 

Critical Applications

• Size ≠ Complexity

• It’s the engineer’s job to manage increased design 
size and keep the complexity at practical levels.  
This is called subsystem engineering.
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Conclusions: Simple and Complex Hardware

"These are highly complicated pieces of equipment almost as 
complicated as living organisms. In some cases, they've been 
designed by other computers.  We don't know exactly how 
they work."
-- Scientist in Michael Crichton's 1973 movie, Westworld
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